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Abstract

Human motion generation is an important area of research in many fields. In this
work, we tackle the problem of motion stitching and in-betweening. Current meth-
ods either require manual efforts, or are incapable of handling longer sequences. To
address these challenges, we propose a diffusion model with a transformer-based
denoiser to generate realistic human motion. Our method demonstrated strong per-
formance in generating in-betweening sequences, transforming a variable number
of input poses into smooth and realistic motion sequences consisting of 75 frames
at 15 fps, resulting in a total duration of 5 seconds. We present the performance
evaluation of our method using quantitative metrics such as Frechet Inception
Distance (FID), Diversity, and Multimodality, along with visual assessments of the
generated outputs.
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1 Introduction

Human motion data are important, perhaps evident by its extensive usage across various fields.
Human motion generation techniques play important roles from driving character animation movies
and video games to robotics striving for a more natural and human-like feel. Motion capture devices
and hand-sculpted human motion sequences are common ways to acquire human motion. However,
due to the high cost of quality motion capture devices, the skills required to keyframe human motion
manually, and their flexibility and limitations, it is not feasible for many applications. The demand
for high-quality human motion data has precipitated extensive research on human motion generation,
with the primary goal of generating realistic and natural human motion.
Over the years, there have been numerous work leveraging the generative capabilities of artificial
intelligence for this task. In particular, we have seen the use of neural network-based models such
as diffusion transformer models [Shi et al., 2023], generative adversarial networks (GAN) [Lin and
Amer, 2018], variable autoencoders (VAE) [Habibie et al., 2017], convolutional neural networks
(CNN) [Zhou et al., 2019, Pavllo et al., 2019] and recurrent neural networks (RNN) [Martinez et al.,
2017, Zhou et al., 2018a, Pavllo et al., 2018] producing promising results. These approaches offer
the potential to overcome the limitations of traditional methods, making high-quality human motion
more accessible for many applications.

Despite recent advances in human motion generation, there is relatively little research focused on
motion stitching. Motion stitching involves generating a realistic motion sequence that passes through
given keyframes. These keyframes can appear at any point in the sequence. Although existing
studies address continuous motion generation from prior motion data, few explicitly tackle this
challenge. For example, [Martinez et al., 2017] proposed a sequence-to-sequence RNN architecture
with residual connections to enhance short-term human motion prediction by directly modeling
motion velocities. The sampling-based loss function was used to ensure the model recovered from
its prediction errors during training. QuaterNet [Pavllo et al., 2019], an extension of earlier [Pavllo
et al., 2018], uses a CNN over its original RNN approach and focuses on quaternions for rotation
representation, eliminating discontinuities and singularities that can hinder training. QuaterNet uses
a positional geometric loss function, the predicted rotations are converted to joint positions using
forward kinematics. However, these models are limited as they require all motion frames to follow
each other and be positioned at the start of the sequence.

[Harvey et al., 2021] addressed this challenge by proposing the use of an adversarial RNN architecture
with additive embedding modifiers to handle varying transition lengths. It also used scheduled target
noise vectors for a diverse generation of realistic motions. However, their method operated primarily
in the latent space of the RNN which could limit its ability to fully leverage the explicit temporal
relationships that exist between motion frames.

To address these challenges, we propose a diffusion model approach. First, we pass the input motion
frames encoded with their position in the motion sequence and the current diffusion step into an
encoder transformer. Here, we capture the relationships between motion frames with the help of the
self-attention mechanism as described in [Vaswani et al., 2017]. Next, the encoder output is used
together with an initial Gaussian noise as input to another encoder transformer to predict the clean
motion at the given time step. The role of the transformer is to serve as a denoiser as described in
[Ho et al., 2020]. We incorporate the idea of predicting clean data instead of noise from [Shi et al.,
2023]. The output of this transformer is then fed to a noise scheduler which adds random Gaussian
noise based on the current time step to retrieve the noisy input for that time step. This noisy input is
then returned in place of the initial Gaussian noise. The entire process is repeated for a predefined
number of times.

Our contributions are as follows:

• We developed a diffusion model that generates realistic human motion, filling missing
motion frames within a given sequence.

• We demonstrated the effectiveness of our method through extensive experiments on short-
term and long-term motion generation tasks.

2



Figure 1: The workflow of our approach. Contextual information is extracted from the input poses c
using a transformer encoder. The output is used to transform noisy motion data xt to clean motion x̂t

0
using another transformer encoder. The clean motion goes through the noise schedule to generate the
noisy data xt−1 for the next timestep. This process is repeated for a predefined number of iterations.

2 Related Works

2.1 Human Motion Generation

Prior work on human motion generation can be classified according to the input condition used
for motion generation. These classifications include text-to-motion, action class-to-motion, prior
motion-to-motion, and video-to-motion.

Transformation of text into motion involves generating motion from a text description. An encoder
like CLIP [Radford et al., 2021] is often used to encode the input. [Chen et al., 2022] used VAEs to
learn a representation of human motion, then performed diffusion on this latent space representation
instead of the raw motion data. MotionCLIP [Tevet et al., 2022] also used autoencoders, but instead
mapped the CLIP representation of text to motion. MotionGPT [Zhang et al., 2024] employed LLMs
fine-tuned with LoRA [Hu et al., 2021] for motion generation. Motion generation tasks are fed into
it as a prompt. [Guo et al., 2022] used autoencoders to generate motion sequences with dynamic
lengths from text by also predicting the length from the text. They also proposed the HumanML3D
dataset. FG-MDM [Shi et al., 2023] further improved the generalization capabilities of these models
by conditioning the input with LLMs. FG-MDM used LLMs to expand the text description of motion
from the HumanML3D dataset [Guo et al., 2022] by including additional descriptions of several body
parts through the motion encoded with CLIP.

Action class-to-motion methods focus on generating motion from a discrete number of classes
describing the motion. Some of these classes may include ’running,’ ’jumping,’ ’walking,’ etc. For
example, Action2Motion, [Guo et al., 2020], proposed a temporal VAE with Lie algebra-based
pose representation. This approach was tested on the NTU-RGB+D dataset with 120 action classes
and HumanAct12 with 12 course-grained action classes. [Petrovich et al., 2021] also used a VAE
and evaluated their approach on the same dataset as [Guo et al., 2020]. Unlike previous work that
examined the loss in joint rotation or the loss in reconstruction in joint positions, the authors assessed
the loss in reconstructed vertices of the SMPL body model [Loper et al., 2015] and also opted for a 6D
rotation representation [Zhou et al., 2018b] for training. [Yang et al., 2018] proposed a pose sequence
generative adversarial network (PSGAN) on labelled action classes to drive a human video generation
model. PSGAN employed an encoder-decoder architecture with residual blocks and LSTM modules
for temporal modeling.

In video-to-motion, [Sun et al., 2021] introduced a framework to forecast human motion from past
video frames. The core idea was utilizing action-specific memory banks to capture motion dynamics.
The system first predicts the action class from the observed video frames and then queries the memory
bank associated with the predicted action class to get relevant motion dynamics. Another work by
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[Pavllo et al., 2018] achieves a slightly different goal, the authors proposed a method to extract the
human motion data described in a video sequence using a temporal convolution model. Their work
has served as a tool for powering optical motion capture devices.

More closely related to this study is motion generation from prior motion. In addition to the work
[Martinez et al., 2017, Pavllo et al., 2019] discussed in the previous section, [Hernandez et al., 2018]
presented STIM-GAN, designed to preserve temporal coherence between generated motion and
introduced frequency-based metrics for accessing motion quality. [Harvey et al., 2018] proposed
a Recurrent Transition Network (RTN) to generate a realistic motion transition between different
states. The core of RTN uses LSTM with initialized hidden states. [Zang et al., 2020] proposed
MoPredNet, a few-shot human motion prediction model that leverages deformable spatio-temporal
convolution network (DSTCN), sequence masks, and a parameter generation module to adapt to new
motion dynamics and make accurate long-term predictions. [Qu et al., 2024] introduced FMP-OC, a
framework that uses LLMs for predicting motion with a few shots without additional training. This
framework bridges the gap between LLMs and numeric motion data. Unlike the classes of models
discussed above, [Holden et al., 2016] presented a convolutional autoencoder that takes in high-level
parameters such as the trajectory of a character over terrain and the movement of the end effectors
(hands and feet) to generate full body motion.

2.2 Representing Rotation

The choice of rotation representation is important in training neural networks as it directly affects the
stability and accuracy of the learning process. [Pavllo et al., 2019] highlighted two critical properties
for rotation representation; continuity and interpolation. These properties rule out Euler angles as a
suitable rotation representation. Exponential maps, another alternative to represent rotation, suffer
the same fate. However, quaternions possess 3D interpolation properties, with only two quaternions
encoding the same rotation. The authors presented an approach to resolve this ambiguity to ensure
that the quaternion representation was continuous.

Upon further exploration of the rotation representation, [Zhou et al., 2018b] proposed the continuous
rotation representation in higher dimensions. They proposed a method to represent rotation in 5D
and 6D for any given 3D rotation. Another work by [Xiang and Li, 2020] discusses the effectiveness
of higher-dimensional rotation representations such as 5D and 6D embedding. They revealed that
even higher-dimensional representation could struggle in certain scenarios, particularly when dealing
with point clouds with nontrivial rotational symmetry. The authors use ensembles of representation
to mitigate these issues.

3 Methodology

Given a set of input poses c ∈ RL×F and respective pose indices ci ∈ RL, F = 3 + J · D, D
represents the number of dimensions of the joint representation (e.g., a quaternion or 6D rotation
representation [Zhou et al., 2018b]), and J is the number of joints, the objective is to generate output
motion sequence x ∈ RB×F . L is the context length or the number of input poses. B is the block
size or the length of the generated motion sequence. L ranges from 1 to B/2, F is the dimensionality
of each pose representation, which includes the 3D position of the root joint relative to the first frame
in the motion sequence, joint features (e.g., rotations), which are encoded in D dimensions for each
of the J joints. x is ensured to retain the poses in c at specified index ci and to follow the dynamics
and patterns observed in c.

3.1 Denoising Diffusion Model

The proposed method uses a diffusion model for generating human motion. This process is inspired
by the natural phenomenon of diffusion, where particles spread from regions of higher concentration
to lower concentration until equilibrium is achieved. The exception here is that the aim is to learn the
reverse process, from a state of high entropy (i.e. standard normal noise) to a state of low entropy
(i.e. clean data). It consists of two sub-processes, the forward process and the reverse process. The
primary component of the forward process is the noise scheduler. Starting with clean data x0 at t = 0,
Gaussian noise N (µ, σ2) is gradually added to x0. At each time step t, µ, and σ are determined by
the noise schedule. The goal is to transform x0 into xt where xt is approximately a standard normal
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distribution N (0, I) with high entropy. The reverse process aims to reverse the forward process by
predicting clean data x0, or the standard normal noise added. This stage is performed by a denoiser.
In our case, at each time step, the denoiser takes in noisy data xt and predicts clean data x̂t

0. This
step is done iteratively for the number of given time steps to generate the final clean data.

3.2 Noise Schedule

The choice of the beta schedule determines how noise is introduced during the forward process. Our
method uses a noise schedule with a sample linear beta schedule [Ho et al., 2020] among others
including the cosine [Nichol and Dhariwal, 2021] and the sigmoid [Jabri et al., 2022] beta schedule.
The noise schedule, denoted by βt, is defined as:

βt = βmin + t · βmax − βmin

T
(1)

where βmin and βmax are the minimum and maximum noise levels, respectively, and T is the total
number of time steps. With βt defined, the forward diffusion process for any given time step t can be
described as in equation 2. ᾱt represents the cumulative product of noise coefficients up to time step
t, and ϵ ∼ N (0, I) is Gaussian noise.

xt =
√
ᾱt x0 +

√
1− ᾱt ϵ (2)

ᾱt =

t∏
s=1

(1− βs) (3)

3.3 Denoiser Network

The denoiser network is built on the transformer architecture. It consists of two encoders. For
each sampling step, a masked input encoded with the current time step is generated using c and ci
and passes through a stack of transformer encoder layers. The output, together with xt, which is
initially standard normal noise, is fed into another stack of transformer encoder layers to predict
clean motion x̂t

0. If the current time step is greater than zero, xt−1, noisy data for the next denoising
step are obtained from equation 4. x̂t

0 is the predicted clean motion at time step t, β̃t is the posterior
variance at time step t and ϵ ∼ N (0, I) denotes standard normal noise. This process continues until
T iterations are completed and the final clean motion x̂0

0 is obtained.

xt−1 = x̂t
0 +

√
β̃t · ϵ (4)

3.4 Forward Kinematics

To reconstruct the joint positions from individual local joint rotations and the global root position, we
define a function FK(x;A(i), B) to perform the forward kinematic process. x is a tensor of rotation
matrices representing local rotation for each joint. A(i) is a function that returns the kinematic chain
of the target joint with index i, this chain is an ordered set of joints connecting the root joint to the
target joint. B is an ordered set of position vectors for each joint defining the rest pose. For a joint at
index i, the position is calculated as shown in equation 5. jp denotes the index of the parent to j in the
kinematic chain A(i). For the case where j is the index of the root joint, we set Bjp to a zero vector.

pi =

 ∏
j∈A(i)

[
xj 0

Bj −Bjp 1

][
0
1

]
(5)

3.5 Training Objective

The training objective at any time step is to minimize the error between x0 and x̂t
0. We define a

composite loss function l with five components for this.
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• Model Loss lg: Measures the distance between the predicted clean motion x̂0 at time step t
and the ground truth motion x0.

lg =

√√√√ 1

N

N∑
i=1

(
x̂
t(i)
0 − x

(i)
0

)2

(6)

• Reconstruction Loss lr: Measures the distance between the reconstructed joint position of
the predicted clean motion and the ground truth.

lr =

√√√√ 1

N

N∑
i=1

(
FK(x̂

t(i)
0 )− FK(x

(i)
0 )

)2

(7)

• Context Loss lc: Measures the distance between the reconstructed joint positions of context
keypoints in the predicted clean motion x̂t

0 and the ground truth motion x0 for the context
indices ci.

lc =

√
1

|ci|
∑
i∈ci

(
FK(x̂

t(i)
0 )− FK(x

(i)
0 )

)2

(8)

• Rotation Velocity Loss lr_vel: Measures the distance between the rotation velocities of the
predicted clean motion x̂t

0 and the ground truth motion x0.

lr_vel =

√√√√ 1

N − 1

N−1∑
i=1

(
(x̂

t(i+1)
0 − x̂

t(i)
0 )− (x

(i+1)
0 − x

(i)
0 )

)2

(9)

• Position Velocity Loss lp_vel: Measures the distance between the position velocities of the
predicted clean motion x̂t

0 and the ground truth motion x0.

lp_vel =

√√√√ 1

N − 1

N−1∑
i=1

(
(FK(x̂

t(i+1)
0 )− FK(x̂

t(i)
0 ))− (FK(x

(i+1)
0 )− FK(x

(i)
0 ))

)2

(10)

FK is a function that computes the joint positions from joint orientation and root position using the
forward kinematic process. The total loss is a sum of these components:

l = lg + lr + lc + lr_vel + lp_vel (11)

4 Experiments

4.1 Dataset and Preprocessing

Our experiment used five AMASS data sets [Mahmood et al., 2019]. This included CMU mocap
[Carnegie Mellon University], BMLrub [Troje, 2002], DanceDB [Aristidou et al., 2019], SFU
[University and of Singapore], and MPI Limits [Akhter and Black, 2015]. We trained our model on
CMU mocap, BMLrub, and DanceDB. We then evaluated the zero-shot performance of our model on
SFU and MPI Limits. The CMU mocap dataset consists of 1983 motions from 96 subjects totaling
543 minutes of motion data. The dataset covers various human activities, including walking, running,
dancing, and other everyday activities. The BMLrub dataset consists of 3061 motion sequences
performed by 111 subjects covering 522 minutes of motion data. DanceDB consists of a wide
range of dance styles and performances. It includes over 150 motions, with 20 subjects and a total
duration of 203 minutes. SFU and MPI Limits are on the smaller side, with a total duration of 15 and
20 minutes, respectively. SFU consists of 44 motions with 7 different subjects, while MPI Limits
includes 35 motion sequences with 3 subjects. We executed a pipeline with three stages to preprocess
the datasets. First, each motion sequence is downsampled to a target frame rate of 15 fps. This is
done by selecting frames at an interval determined by the source and target frame rate. The second
stage of the pipeline involves generating chunks of motion sequences for training purposes. Here,
we split motion sequences into chunks of 75 frames each, representing 5 seconds. The final stage
involves increasing the output of the previous stage. We extended the data size by rotating each
motion sequence randomly twice around the vertical axis. We utilized a data split of 80-10-10 for
training, validating and testing respectively.
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4.2 Experimental Setup

In our experiment, we used 6D rotation representation [Zhou et al., 2018b] and two encoder trans-
formers with the following configurations. Each encoder consists of six layers, an input dimension of
512, a feed-forward dimension of 2048, eight attention heads, and drop-out layers of 0.1 drop rate.
The model was trained with a batch size of 128 and 300 diffusion time steps on a single NVIDIA
P100 GPU provided by Kaggle.

4.3 Evaluation Metrics

To evaluate the effectiveness of our model in generating high quality and diverse motion sequences,
we employ three different metrics: Frechet Inception Distance (FID), Diversity, and Multimodality.
These metrics are discussed in the following.

• Frechet Inception Distance (FID): FID was originally introduced to measure the performance
of GANs on image generation tasks. It has continued to be used in general on generation
tasks. It measures the distance between the extracted feature distribution of real and gener-
ated data. It works by comparing the mean and covariance matrix of the extracted features
from both real and generated data. A lower FID score indicates the feature distribution of
generated data is closer to real data and can be considered to be realistic and of high quality.

• Diversity: Diversity measures the variation in the model’s generated output across various
input condition. It can be calculated by averaging the pairwise distance between generated
samples in feature space. High diversity indicates that the model can generate a wide variety
of distinct outputs.

• Multimodality: This measures the ability of the model to generate varied motion sequences
from similar input or context. This is useful for a generative model where there could be
multiple valid outputs for the same input condition, and we want the model to capture the
full range of this space. Calculated by measuring the average pairwise distance between
generated samples that share the same input condition.

To extract the required features for computing these metrics, we trained an autoencoder to extract a
feature embedding of R256 from a given motion sequence, mapping f : RB×F → R256.

5 Results and Analysis

We present the results of our evaluation as follows:

5.1 Visual Evaluation of Generated Motion

The following figures 2 to 5 illustrate the generated motion sequence output of our model. These
images represent various frames of the generated sequences which illustrates motion dynamics over
time. The generated frames have been downsampled for clearer visualization.

Figure 2: Sample output from our model on unseen input motion. The red body indicates the input
poses. This has been downsampled for clearer visualization and the ratio of input poses to generated
output is maintained.
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Figure 3: Sample output from our model on unseen input motion. This has been downsampled for
clearer visualization. Each frame has been sufficiently spaced to prevent overlapping.

Figure 4: Sample output from our model on unseen input motion. Each frame has been sufficiently
spaced to prevent overlapping.

5.2 Quantitative Evaluation Metrics

In table 1, we present the evaluation results of our model with input lengths of 10 and 20 across
multiple datasets. The multimodality scores decrease as the number of input poses increases, due to
stronger constraints imposed by the increased input length, reducing the ambiguity in the generated
motion sequence. It is important to mention that this table does not include multimodality scores for
real data as it is not grouped by identical motion frames.

6 Conclusion

In this study, we explored the use of diffusion models for motion stitching and in-betweening.
We trained a transformer-based denoiser on datasets from AMASS and presented the output of
sampling our model using the reverse diffusion process for 300 timesteps. Furthermore, we present
the performance evaluation of our model using FID, Diversity, and Multimodality metrics. Some
limitations of this study include the fixed output sequence length, motion generation from unrealistic
input key poses and model performance degradation on smaller input context length. For future
work, we aim to consider additional input conditions to capture more contextual information about

Figure 5: Sample output from our model on unseen input motion. Each frame has been sufficiently
spaced to prevent overlapping. Root position and orientation are not visualized.
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Table 1: Evaluation metrics for different datasets

Dataset Method FID ↓ Diversity ↑ Multimodality ↑

CMU
Real 0.026±0.003 2.788±0.032 -

Ours|c|=20 0.392±0.006 2.991±0.039 0.165±0.027

Ours|c|=10 0.514±0.009 3.147±0.033 0.173±0.019

BMLrub
Real 0.015±0.003 2.545±0.038 -

Ours|c|=20 0.253±0.006 2.625±0.037 0.097±0.008

Ours|c|=10 0.265±0.007 2.472±0.028 0.117±0.011

DanceDB
Real 0.073±0.006 3.610±0.019 -

Ours|c|=20 0.716±0.003 3.751±0.057 0.362±0.035

Ours|c|=10 0.924±0.002 3.788±0.015 0.488±0.048

SFU
Real 0.199±0.094 3.033±0.049 -

Ours|c|=20 0.742±0.011 3.139±0.053 0.209±0.018

Ours|c|=10 0.801±0.005 3.202±0.038 0.235±0.039

MPI Limits
Real 0.319±0.087 2.743±0.046 -

Ours|c|=20 1.550±0.001 2.937±0.040 0.235±0.031

Ours|c|=10 2.268±0.001 3.0124±0.068 0.355±0.042

the desired output motion sequence, for example, a textual description of the desired output motion.
Conditioning on more contextual information is important to guide stitching and in-betweening on
longer motion generation tasks.
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